Experiment and Comparison on Traditional CNN model

Yang Li
Abstract

In this paper, we develop a new
model designed to do image classification
and explore the effect of tuning the
hyper-parameters and adopting different
network structures. We build our own
classifier OurNet that is able to correctly
categorize the images into their respective
classes. We also explore the different results
by changing the number of layers, different
optimization methods (SGD and Adam), and
different pooling functions (AvgPool and
MaxPool). We compare our model with the
traditional model AlexNet and ResNet 18 to
see how different structures have an impact
on the ultimate outcome.

1. Introduction
1.1 Overview

This project is investigating CNN
structures and optimization strategies to see
how each influences the image classifier.
There are many similar works from different
people. From the piazza post of TA, we
found Kuang Liu’s project on CIFAR- 10.
We look at the implementation of his project
and the results he gets for brainstorming our
projects. (Kuang Liu, [8])

1.2 Data Set

We are using the dataset introduced
in HW5, which is CIFAR-10 (“The
CIFAR-10 Dataset” [1]). This dataset is very
popular since it is not too big and somewhat
challenging. The dataset consists of 60000

Yingjia Gu

images with 10 classes. Each has a format of
32 x 32 x 3. The last 3, corresponds to RGB
channels.

1.3 Classes

The 10 classes are airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships,
and trucks.

The classes are designed to be
completely mutually exclusive: for example,
neither automobile nor truck contains
images of pickup trucks.

There are also big variations within
the same class, for example, the bird class
has different types of birds (both big and
small) and the angels of the photos taken are
totally different so that there might be the
case that only part of the bird is shown.

We can also see that the classes are

derived from all different objects
mostly coming from two major groups:
animals and transportation tools. So overall
this is a great dataset for us to use in this
experiment.

car plane truck deer

Figure 1. Example of Datas (CIFAR-10)



2. Tasks
2.1 Prediction Task

For this particular project, the task
we are going to study is a very common
classification task. Basically, it is taking an
image as input and then returning the
corresponding class. This task is extremely
important because most Computer Vision
areas are based on image classification. For
example, self-Driving and face recognition,
etc. This area is extremely valuable to study
and has many real-world applications.

2.2 Train, Test Split

For this project, we used the default
train test split by Pytorch. The training set
has a size of 50000, where the testing set has
a size of 10000. Normally this should be a
Train, Test, Validation split. For
convenience, we are not creating a
validation data set. We are performing 10
epoch training for each model, which seems
not causing overfitting.

2.3 Feature Engineering
There are two Pipelines adopted in
our experiment:

1. Directly normalize on the image 32 x
32 x 3 tensors to be in a range [-1, 1].
(This Method was introduced in
HWS5. Will be used on Baseline Net
and OurNet)

2. Change the shape of each image to
244 x 244 x 3. Then applying the
normalization that was introduced
from Pytorch AlexNet and ResNet
18. (Pytorch AlexNet.) This will also
be used for those two structures.

3. Model and Method
3.1 Overview

We are going to use Convolutional
Neural Networks for classification. CNN
represents a big breakthrough in image
classification and has addressed many
challenging computer vision tasks.

To briefly explain how CNN works,
images can normally be considered a high
dimensionality matrix with each entry being
considered as a pixel. CNN’s multiple
convolutional filters scan through the feature
matrix, achieving the dimensionality
reduction and feature extraction. Therefore,
CNN’’s effectiveness in reducing feature
numbers without the cost of losing on the
model quality suits the purpose of image
classification. Also, by pooling and larger
strides, CNN has resistance to noise.
(Mishra, Prafful [2])

CNN is not only being used in
computer vision research, but also being
used as a feature extraction layer on other
areas like Natural Language Processing. So
it is extremely important to understand how
this method works.

3.2 Baseline

We are going to directly use the
model we used in HW 5. This can be
considered as a rather shallow neural
network compared to the recent models.

It consists of two convolution layers
with kernel size 3, stride 1, and padding 1. It
follows with ReLu as an activation function
and an AvgPool2d. In the end, there are two
fully connected layers for classification.

We can see that this model is very
simple and light. At the same time, this is



the very first model we implemented during
this class, so we want to set this as a
baseline to see if other models can
outperform this model.

Baseline_Net(
(convl): Sequential(
(0): Conv2d(3, 10, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(conv2): Sequential(
(0): Conv2d(1@, 20, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): AvgPool2d(kernel_size=2, stride=2, padding=0)
)
(fcl): Linear(in_features=1280, out_features=100, bias=True)
(fc2): Linear(in_features=100, out_features=10, bias=True)
)

Figure 2. Baseline model Structure (HWS)

3.3 OurNet

For this model, we implemented it
ourselves. It is developed on top of the
baseline model. The main goal here for us to
beat the baseline model. During the creation
process, we have tried out different ways to
stack layers and have explored with different
activation functions. The model we create is
somewhat lighter than AlexNet.

The model consists of 4 convolution
layers (kernel size 5, stride 1, padding 2)
and 2 fully connected layers.

The new thing here is instead of
doing a pooling layer after each convolution
layer, We apply a Maxpool after the first
convolution layer, and for the third layer, we
apply the Avgpool. It is later shown that it
works well in this dataset.

OurNet(
(convl): Sequential(
(0): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(@): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()

(conv3): Sequential(
(@): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()
(2): AvgPool2d(kernel_size=2, stride=2, padding=0)

(conv4): Sequential(
(0): Conv2d(64, 100, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): ReLU()

(fcl): Linear(in_features=6400, out_features=500, bias=True)
(fc2): Linear(in_features=500, out_features=10, bias=True)

Figure 3. OurNet Structure

3.4 AlexNet

AlexNet is developed by Alex
Krizhevsky. It was a very deep network back
in 2012.

The model has 5 convolution layers.
The pooling layers are all overlap max
pooling, which helped reduce the error-rate
compared to traditional max pooling. The
activation function is Relu. It also contains
some dropout layers to deal with overfitting
and fully connected layers for classification.
(Krizhevsky, Alex, Ilya Sutskever, and

128 Max
Max pooling
pooling

2048 2048

Figure 4. AlexNet Structure (Krizhevsky,
Alex, Ilya Sutskever, and Geoffrey E.
Hinton. [3])

3.5 ResNet-18

ResNet is developed by Kaiming He.
It is a simple and clean framework to train
very deep nets.

The basic structure of ResNet is
really clear. It has many residual learning
blocks. The 18 is the number of residual
learning blocks in the network. Each layer
contains three components: two 3%3
convolutional networks,
batch-normalization, and ReLU. Residual
learning is applied for every two layers.
ReLU is used after addition if there is a
shortcut combination. (“ Residual Networks
(ResNet).”’[4], He Kaiming [5])



Y

weight layer
F(x) Jrels .
weight layer identity

Figure 5. Example of Residual Learning
Block (He Kaiming [5])

This structure is very useful to
preserve the information from the previous
layer and pass it into the next layer. It is
being proved to be working in image
classification tasks.

And we can also notice this model is
built on residual learning blocks. So in the
original paper, they also introduced a more

stack version of this model, like ResNet 152.

4. Experiments
4.1. Overview

There are 3 sets of experiments we
perform. We compare different optimization
techniques on 4 models selected. And the
last experiment is testing the usefulness of
pre-trained models.

4.2 Experiment 1

We are using the data to have the
mini-batch size as 4, with 10 epoch for each
model. Most importantly, we used SGD
(Stochastic Gradient Descent) with a
learning rate equals to 0.001 and momentum
equals 0.9. Then we are also checking the

accuracy at epoch 5 for each model to look
at the optimizer performance.

For clarification, We didn’t use
pre-trained AlexNet and ResNet in order to
compare the actual usefulness of the
structure.

Results can be found in Table 1.

4.3 Experiment 2

In this experiment, we are using
Adam (Kingma, Diederik P., and Jimmy Ba.
[9])with a learning rate of 0.0001 as an
optimizer. Except this, all settings remain
the same.

Results can be found in Table 2.

4.4 Experiment 3

In this experiment, we are using
Adam with a learning rate of 0.0001 as an
optimizer. We only perform training on two
best models in this project, AlexNet and
ResNet 18. This time we are actually using
the pre-trained version of those two models,
which are directly from Pytorch. (Pytorch
AlexNet and ResNet. [6][7])

For this experiment, we are mainly
discussing the differences between
pre-trained model and non-pre-trained
model. How much the accuracy will
increase with pre-training. This is important
to actually understand how the pre-train will
work in real world applications.

For faster training, the mini-batch
size here is 16.
Results can be found in Table 3.



5. Results
5.1 Overview

The evaluation metric we use here is
accuracy. Since this is a classification task, it
is natural to adopt this metric. So the results
are shown below with tables. For AlexNet
and ResNet 18, “NP” means
Non-Pre-Trained and “P” means Pre-Trained
model. “Acc” stands for accuracy.

5.2 Experiment 1 result

Model Accat 5 Accat 10
epoch epoch
Baseline 48% 66%
OurNet 51% 71%
AlexNet (NP) 52% 78%
ResNet 18 (NP) | 55% 80%

Table 1. Experiment 1 results (SGD Optimizer)

According to the Table 1 above, we
can see some patterns. The deeper the model
is, the better it performs. For AlexNet and
ResNet-18, they maintain relatively high
accuracy when having the 5 epochs and 10
epochs. For OurNet, it is between the
Baseline model and AlexNet. For SGD, in
this experiment we find ResNet 18 has the
best accuracy, and AlexNet is 2% below
ResNet 18.

5.3 Experiment 2 result

Model Accat 5 Accat 10
epoch epoch
Baseline 45% 62%
OurNet 54% 72%
AlexNet (NP) 61% 77%
ResNet 18 (NP) | 63% 83%

Table 2. Experiment 2 results (Adam Optimizer)
For this set of experiments, we can
notice that the accuracies at 10th epoch are
pretty similar. ResNet 18 has a higher
accuracy after using Adam as an Optimizer.

We do notice some interesting things
though. If we look at the accuracy at 5th
epoch, the deeper models have a much
higher accuracy than SGD gives. This is
probably because of the adaptiveness of
Adam.

For the 10th epoch, AlexNet has a
9% increase in accuracy with Adam. We do
see that Adam will be a better optimizer to
choose in some sense.

We didn’t time the training process.
However, since Adam involves more
calculations for gradients, the training time
is a little bit longer for models. There will be
a trade off for those two methods.

In our opinion, Adam is a better
optimizer to choose if there are enough
computing resources.



5.4 Experiment 3 result

Model Acc at 10 epoch
AlexNet (P) 86%
ResNet 18 (P) 92%

Table 3. Experiment 3 results

From table 3, we notice the
pre-trained model is really powerful. We
know that it is novel to use a pre-trained
model. However, it is still good for
newcomers to try it out and see the
differences.

For both models, there is a 9%
increase in accuracy. This transfer learning
technique is definitely something we can
explore and experiment on.

5.5 Finding and Thoughts

We will not discuss this as an
experiment but it is still worth talking about.
The mini-batch size plays an important role
in the training process.

For a bigger batch size, we noticed
the speed of convergence is much slower,
and it may converge to a bad minimum. If
the batch size is really small, the training
process is longer due to updating the
parameter more. So there is some trade off
going on.

We have discussed the mini-batch
size problem with Kening Zhang. Many
researchers focus more on the structure and
they probably don’t pay much attention to
this problem. However, in our opinion, it is
still worth noticing.

6. Conclusion

In this detailed and well designed
project, we have tried different layers,
activation functions, and structures of CNN.
We have a rough idea of how things work
and how we should implement them.

We proposed our own Model OurNet
with the highest accuracy is 72 percent.
Although it beats our baseline, it didn’t
perform as well as AlexNet in our
experiment. The best result we achieved was
92% accuracy with the ResNet 18
Pre-trained model. This is the similar result
in Kuang Liu’s project. (Kuang Liu [8].)

Also, we have discussed the different
performance caused by two different
optimizers (SGD and Adam). Adam is
performing better at the early epochs, and at
the end they are roughly the same. However,
Adam is more computationally expensive.

At the very end, we briefly discussed
the finding based on mini-batch size. The
larger batch size will help with training
speed, but sometimes will hurt the
performance. There is a tradeoff between
performance and speed. This is something
we consider very important but hasn’t been
commonly discussed.

Overall this is a very comprehensive
experiment for newcomers. We explored the
basic CNN and optimizers. It will help us to
understand how things work, and give us
some hands on experience with deep neural
networks.

7. Acknowledgements
We would like to give special thanks
to Prof. Zhuowen Tu who has taught many



interesting topics and gone over the details
of Neural Networks. He also helps us to
brainstorm and gives useful suggestions and
links on creating our own project. We would
also like to thank Kening Zhang, our
teaching assistant for all the technical
support and discussion on batch size
differences.

8. References

[1] “The CIFAR-10 Dataset.” CIFAR-10 and
CIFAR-100 Datasets,
www.cs.toronto.edu/~kriz/cifar.html.

[2] Mishra, Prafful. “Why Are
Convolutional Neural Networks Good for
Image Classification?” Medium, Data
Driven Investor, 20 July 2019,
medium.com/datadriveninvestor/why-are-co
nvolutional-neural-networks-good-for-image
-classification-146ec6e865¢8.

[3] Krizhevsky, Alex, Ilya Sutskever, and
Geoffrey E. Hinton. "Imagenet classification
with deep convolutional neural networks."
Advances in neural information processing
systems. 2012.

[4]° Residual Networks (ResNet).” Residual
Networks (ResNet) - Dive into Deep
Learning ,

d2l.ai/chapter convolutional-modern/resnet.
html.

[5] He, Kaiming, et al. "Deep residual
learning for image recognition." Proceedings
of the IEEE conference on computer vision
and pattern recognition. 2016.

[6] Pytorch AlexNet.
https://pytorch.org/hub/pytorch_vision_alex

net/

[7] Pytorch ResNet.
https://pytorch.org/hub/pytorch_vision_resn
et/

[8] Kuang Liu, pytorch-cifar.
https://github.com/kuangliu/pytorch-cifar

[9] Kingma, Diederik P., and Jimmy Ba.
"Adam: A method for stochastic
optimization." arXiv preprint
arXiv:1412.6980 (2014).


http://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/hub/pytorch_vision_alexnet/
https://pytorch.org/hub/pytorch_vision_alexnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/kuangliu/pytorch-cifar

